A NIWA-led study has found New Zealand’s native forests are absorbing more carbon dioxide (CO2) than previously thought.
Study leader, NIWA atmospheric scientist Dr Beata Bukosa, says the findings could have implications for New Zealand’s greenhouse gas reporting, carbon credit costs, and climate and land-use policies.
She says forests – both native and exotic – play a vital role in absorbing CO₂ through photosynthesis, but previous studies may have underestimated the amount of carbon taken up by New Zealand’s mature indigenous forests, which were thought to be roughly carbon neutral.
Using advanced modelling and NIWA’s supercomputer, the researchers examined a decade of atmospheric data, from 2011 to 2020, to better estimate the amount of CO₂ absorbed by New Zealand’s land ecosystems. The NIWA team worked with collaborators at GNS Science and Manaaki Whenua as well as other New Zealand and overseas universities and institutes.
The team used an inverse modelling technique – this combines atmospheric greenhouse gases with a model showing how air is transported through the atmosphere to identify CO2 sources and sinks – and compared the results against New Zealand’s Greenhouse Gas Inventory as well as ‘bottom-up’ models. While the Inventory applies a combination of field inventory, modelling, and remote sensing to quantify forest carbon stocks and stock changes, the ‘bottom-up’ models use calculations based on ecosystem processes, land use and climate across the country, says Dr Bukosa.
“It was thought that some areas and land use types were in a near-balance state with the absorption and release of CO₂. Earlier estimates of how much carbon was removed by New Zealand land ecosystems ranged from a net 24 to 118 million tonnes a year. Our research found that New Zealand’s natural environment absorbed approximately 171 million tonnes of CO₂ annually.” – Dr Bukosa
She says the largest differences between earlier estimates and the new findings came in the South Island.
“This was especially in areas dominated by mature native forests and certain grazing lands. We also found seasonal variation, as during autumn and winter, less CO₂ is released into the atmosphere than earlier estimates suggested.”
“That study was based on only three years of data, and we weren’t sure
if it was just a transient effect related to the climatic conditions, or
if the effect was confined to Fiordland. Our new study shows the carbon
sink is more widespread than we thought, particularly across the South
Island, with greater uptake of CO₂ extending up the West Coast.
“With improvements in our modelling techniques, and data coverage, we’ve
now shown the extra carbon uptake has persisted for at least a decade.
More research could help us understand exactly why our method has shown
such a difference in the carbon source and sink balance compared with
other methods.”
Inverse modelling provides an independent estimate of emissions that can complement inventory-based approaches for emissions reporting, she says.
“New Zealand was the first country to develop the capability to infer
national CO₂ emissions from atmospheric data and has since supported
other countries to develop similar capability.”
Dr Andrea Brandon, a Ministry for the Environment principal scientist who co-authored the study, said the findings help build a clearer picture of the role New Zealand’s natural systems play in absorbing emissions from the atmosphere. However, further work will be needed before they can be included in official emissions reporting.
“We continually improve the Inventory – New
Zealand’s annual record of emissions and removals – as new science and
evidence comes to light. This ensures we have robust information so that
we continue to meet our international reporting obligations.
“The findings from this study indicate there
may be additional carbon uptake somewhere in the system that we are
currently not tracking. We need to identify what we are missing so that
we can further refine our Inventory methods to capture it,” – Dr Andrea Brandon
Dr Bukosa says the results, due to be published shortly in the journal Atmospheric Chemistry and Physics and available here in preprint, have important implications for New Zealand’s tracking of carbon emissions and climate policies:
“We need to better understand why our native forests are absorbing more
CO₂ than expected, and what this could mean for our efforts to reduce
greenhouse gas emissions and achieve our domestic and international
targets.”
The research was part of a NIWA-led, MBIE-funded Endeavour programme called CarbonWatch NZ, which ended last year. NIWA principal scientist Dr Sara Mikaloff-Fletcher led CarbonWatch NZ and says the team is now looking to extend this work to definitively solve the puzzle of the difference in carbon between inventory methods and atmospheric measurements.
“This research suggests that we could make the most of opportunities to
slow climate change through changes to land management. Projections
suggest New Zealand will need 84 million tonnes of emissions reductions
on top of what can be done at home to meet its 2030 international
commitments under the Paris Agreement. In addition to reducing the need
for overseas offsets, better management of our native forests and other
lands could enable New Zealand to be long-term stewards of our carbon
sinks and offer magnificent biodiversity co-benefits.” – Dr
Mikaloff-Fletcher
Under the landmark 2015 Paris Agreement on climate change, humanity is seeking to reduce greenhouse gas emissions and keep planetary heating to no more than 1.5°C above the pre-industrial average. In 2024, temperatures on Earth surpassed that limit.
This was not enough to declare the Paris threshold had been crossed, because the temperature goals under the agreement are measured over several decades, rather than short excursions over the 1.5°C mark.
But the two papers just released use a different measure. Both examined historical climate data to determine whether very hot years in the recent past were a sign that a future, long-term warming threshold would be breached.
The answer, alarmingly, was yes. The researchers say the record-hot 2024 indicates Earth is passing the 1.5°C limit, beyond which scientists predict catastrophic harm to the natural systems that support life on Earth.
2024: the first year of many above 1.5°C
Climate organisations around the world agree last year was the hottest on record. The global average temperature in 2024 was about 1.6°C above the average temperatures in the late-19th century, before humans started burning fossil fuels at large scale.
Earth has also recently experienced individual days and months above the 1.5°C warming mark.
But the global temperature varies from one year to the next. For example, the 2024 temperature spike, while in large part due to climate change, was also driven by a natural El Niño pattern early in the year. That pattern has dissipated for now, and 2025 is forecast to be a little cooler.
These year-to-year fluctuations mean climate scientists don’t view a single year exceeding the 1.5°C mark as a failure to meet the Paris Agreement.
However, the new studies published today in Nature Climate Change suggest even a single month or year at 1.5°C global warming may signify Earth is entering a long-term breach of that vital threshold.
What the studies found
The studies were conducted independently by researchers in Europe and Canada. They tackled the same basic question: is a year above 1.5°C global warming a warning sign that we’re already crossing the Paris Agreement threshold?
Both studies used observations and climate model simulations to address this question, with slightly different approaches.
In the European paper, the researchers looked at historical warming trends. They found when Earth’s average temperature reached a certain threshold, the following 20-year period also reached that threshold.
This pattern suggests that, given Earth reached 1.5°C warming last year, we may have entered a 20-year warming period when average temperatures will also reach 1.5°C.
The Canadian paper involved month-to-month data. June last year was the 12th consecutive month of temperatures above the 1.5°C warming level. The researcher found 12 consecutive months above a climate threshold indicates the threshold will be reached over the long term.
Both studies also demonstrate that even if stringent emissions reduction begins now, Earth is still likely to be crossing the 1.5°C threshold.
Heading in the wrong direction
Given these findings, what humanity does next is crucial.
For decades, climate scientists have warned burning fossil fuels for energy releases carbon dioxide and other gases that are warming the planet.
But humanity’s greenhouse gas emissions have continued to increase. Since the Intergovernmental Panel on Climate Change released its first report in 1990, the world’s annual carbon dioxide emissions have risen about 50%.
Put simply, we are not even moving in the right direction, let alone at the required pace.
The science shows greenhouse gas emissions must reach net-zero to end global warming. Even then, some aspects of the climate will continue to change for many centuries, because some regional warming, especially in the oceans, is already locked in and irreversible.
If Earth has indeed already crossed the 1.5°C mark, and humanity wants to get below the threshold again, we will need to cool the planet by reaching “net-negative emissions” – removing more greenhouse gases from the atmosphere than we emit. This would be a highly challenging task.
Feeling the heat
The damaging effects of climate change are already being felt across the globe. The harm will be even worse for future generations.
Australia has already experienced 1.5°C of warming, on average, since 1910.
Our unique ecosystems, such as the Great Barrier Reef, are already suffering because of this warming. Our oceans are hotter and seas are rising, hammering our coastlines and threatening marine life.
These studies are a sobering reminder of how far short humanity is falling in tackling climate change.
They show we must urgently adapt to further global warming. Among the suite of changes needed, richer nations must support the poorer countries set to bear the most severe climate harms. While some progress has been made in this regard, far more is needed.
A major shift is also needed to decarbonise our societies and economies. There is still room for hope, but we must not delay action. Otherwise, humanity will keep warming the planet and causing further damage.
It’s now official. Last year was the warmest year on record globally and the first to exceed 1.5°C above pre-industrial levels. This doesn’t mean it’s too late to rein in further warming, but the ambition required rises with each delay in action.
New Zealand is no exception. Current climate policies are no longer a sufficient contribution to the global effort to keep warming at 1.5°C, according to the Climate Change Commission’s first review of the country’s 2050 climate target.
New Zealand’s current 2050 target has two components. Methane emissions from livestock must be cut by 24% to 47% below 2017 levels and emissions of all other greenhouse gases must reach net zero. But the commission has made three main recommendations to raise ambition:
a net negative target for emissions of long-lived gases (carbon dioxide and nitrous oxide) by removing 20 million tonnes more from the atmosphere than is released each year
a higher target range for biogenic methane emissions to reach at least 35% to 47% below 2017 levels
and the inclusion of emissions from international shipping and aviation.
The commission says these changes would bring New Zealand closer to “net zero for all gases”, in line with what is needed to achieve the goals of the Paris Agreement.
The 2050 target review was the last effort for the commission’s outgoing founding chair, Rod Carr, who has become a significant voice for climate action. In his closing words to parliament, he said:
Those who continue to promote the combustion of fossil fuels in the open air without permanent carbon capture and storage are, in my view, committing a crime against humanity.
The threshold for recommending a change is high. The commission must consider nine key areas and find “significant” developments that justify recommending a different target.
It found three significant changes occurred since the current target was set in 2019.
1. Global action is ahead of New Zealand
While other countries’ current policies, pledges or targets are not sufficient to keep temperature rise at 1.5°C, many countries now have more ambitious targets than New Zealand.
Australia, Japan, US, Canada, EU and Ireland all adopted full net-zero targets in 2021. Finland and Germany have or are considering net negative targets. Among countries with high biogenic methane emissions, several now have full net-zero targets.
2. Scientific understanding of climate change has changed
Climate impacts are appearing sooner and with more severity than the scientific community understood when the target was set in 2019.
3. The burden shifts to future generations
The increased risks and impacts of climate change have implications for inter-generational equity. Delaying action shifts costs and risks to future generations.
The commission’s report also explores New Zealand’s reliance on large-scale commercial exotic afforestation to meet its climate targets. This is one reason why Climate Action Tracker rates New Zealand’s response as highly insufficient and commensurate with a 4°C world.
Carbon in trees is part of the biosphere and will never be stored as permanently as fossil carbon. To take a case in point, Cyclone Gabrielle in 2023 (made worse by climate change) damaged forests, farms and infrastructure, and removed the social licence for forestry in the region.
How the recommended target was set
The commission’s work is tightly prescribed by law. It looked at four possible ways of sharing the global 1.5°C task: equal per capita emissions, national capacity, responsibility for historic warming and the right of all peoples to sustainable development.
New Zealand’s current target does not meet any of these standards, but the commission says the new target would at least meet the “national capacity” criterion and would be feasible and acceptable. However, it would still see New Zealand contributing two to three times its share of global warming this century.
The commission’s assessment is independent of any global warming metrics such as GWP100 (currently the UN standard). Instead, the commission computed New Zealand’s historical and future contribution to temperature rise directly. Both commonly used historical baselines, 1850 and 1990, yield similar results.
New Zealand’s government is currently particularly at odds with the commission’s recommendation on biogenic methane. It appointed a separate advisory panel last year which put forward a target consistent with causing “no additional warming” to the planet from agricultural methane emissions.
This graph shows the contribution to warming from emissions in New Zealand (1850–2100) under the current 2050 target.Climate Change Commission, CC BY-SA
But the commission rejects this idea, finding that unless the rest of New Zealand’s target were to be strengthened significantly, this would not be consistent with the Paris Agreement or the country’s own climate law.
International aviation and shipping emissions
In a quirk of climate diplomacy, international aviation and shipping emissions were excluded from the original 2050 target. But as the commission points out, they most definitely contribute to global warming and are covered by the temperature target of the Paris Agreement.
Other countries are moving in these areas and the International Civil Aviation and maritime organisations have net zero 2050 goals in place. Air New Zealand and the global shipping giant Maersk both support including these emissions in the 2050 target, which the commission finds to be achievable under multiple different pathways.
New Zealand’s dependence on shipping and air transport is a challenge. The commission puts the combined emissions from these sectors at 6.7 megatonnes – 20% of total CO₂ emissions and close to all industrial or all passenger car emissions. The aviation industry in particular is planning for growth, which, unless addressed, will blow the 1.5°C carbon budget both for New Zealand and globally.
Drawing on “net zero pathways” prepared by the international aviation and shipping industries, the commission finds that including these sources in New Zealand’s revised 2050 target would be achievable. The sectors would not necessarily have to enter the Emissions Trading Scheme, but the status quo (under which these sectors do not attract GST, fuel tax or a carbon charge) is inequitable with other sources of economic activity.
The author acknowledges the assistance and contribution by Paul Callister.
In my new research, I argue the time has come for the dairy sector to adopt a “just transition” framework to achieve a fair and more sustainable food future and to navigate the disruptions from alternative protein industries.
The concept of a just transition is typically applied to the energy sector in shifting from fossil fuels to renewable energy sources.
But a growing body of research and advocacy is calling for the same principles to be applied to food systems, especially for shifting away from intensive animal agriculture.
Aotearoa New Zealand’s dairy sector is an exemplary case study for examining the possibilities of a just transition because it is so interconnected in the global production and trade of dairy, with 95% of domestic milk production exported as whole-milk powder to more than 130 countries.
Environmental and economic challenges
New Zealand’s dairy sector faces significant threats. This includes environmental challenges such as alarming levels of nitrate pollution in waterways caused by intensive agriculture.
This means livestock farmers, agricultural processors, fertiliser importers and manufacturers won’t have to pay for on-farm emissions. Instead, the government intends to implement a pricing system outside the Emissions Trading Scheme by 2030. To meet emissions targets, it relies on the development of technologies such as methane inhibitors.
The development of plant-based and fermentation proteins poses another threat to the dairy sector.Getty Images
In addition to environmental challenges, global growth and domestic initiatives in the development of alternative dairy products are changing the future of milk production and consumption.
New Zealand dairy giant Fonterra is pursuing the growth of alternative dairy with significant investments in a partnership with Dutch multinational corporation Royal-DSM. This supports precision fermentation start-up Vivici, which already has market-ready products such as whey protein powder and protein water.
Fonterra’s annual report states it anticipates a rise in customer preference towards dairy alternatives (plant-based or precision-fermentation dairy) due to climate-related concerns. The company says these shifting preferences could pose significant business risks for future dairy production if sustainability expectations cannot be met.
Pathways to a just transition for dairy
What happens when one the pillars of the economy becomes a major contributor to environmental degradation and undermines its own sustainability? Nitrate pollution and methane emissions threaten the quality of the land and waterways the dairy sector depends on.
In my recent study which draws on interviews with people across New Zealand’s dairy sector, three key transition pathways are identified, which address future challenges and opportunities.
Deintensification: reducing the number of dairy cows per farm.
Diversification: introducing a broader range of farming practices, landuse options and market opportunities.
Dairy alternatives: government and industry support to help farmers
participate in emerging plant-based and precision-fermentation industries.
While the pathways are not mutually exclusive, they highlight the socioeconomic and environmental implications of rural change which require active participation and engagement between the farming community and policy makers.
The Ministry of Business, Innovation and Employment recently published a guide to just transitions. It maps out general principles such as social justice and job security.
For the dairy transition to be fair and sustainable, we need buy-in from leadership and support from government, the dairy sector and the emerging alternative dairy industry to help primary producers and rural communities. This needs to be specific to different regions and farming methods.
The future of New Zealand’s dairy industry depends on its ability to adapt. Climate adaptation demands balancing social license, sustainable practices and disruptions from novel protein technologies.
With the failure of a global plastics treaty—oil-rich nations and the petrochemical industry putting up the strongest opposition—the following article should give food for thought, especially as every mouthful of seafood contains microplastics.
We’ve all seen the impact of our plastic addiction. It’s hard to miss the devastating images of whales and sea birds that have died with their stomachs full of solidified fossil fuels. The recent discovery of a plastic bag in the Mariana Trench, at over 10,000 metres below sea level, reminds us of the depth of our problem. Now, the breadth is increasing too. New research suggests that chemicals leaching from the bags and bottles that pepper our seas are harming tiny marine organisms that are central to sustained human existence.
Once plastic waste is out in the open, waves, wind and sunlight cause it to break down into smaller pieces. This fragmentation process releases chemical additives, originally added to imbue useful qualities such as rigidity, flexibility, resistance to flames or bacteria, or a simple splash of colour. Research has shown that the presence of these chemicals in fresh water and drinking water can have grave effects, ranging from reduced reproduction rates and egg hatching in fish, to hormone imbalances, reduced fertility or infertility, cardiovascular diseases, diabetes and cancer in humans.
But very little research has looked at how these additives might affect life in our oceans. To find out, researchers at Macquarie University prepared seawater contaminated with differing concentrations of chemicals leached from plastic bags and PVC, two of the most common plastics in the world. They then measured how living in such water affected the most abundant photosynthesising organism on Earth – Prochlorococcus. As well as being a critical foundation of the oceanic food chain, they produce 10% of the world’s oxygen.
Prochlorococcus are miniscule, but there are as many of them in the oceans as there are atoms in a ton of gold.Chisholm Lab/Flickr
The results indicate that the scale and potential impacts of plastic pollution may be far greater than most of us had imagined. They showed that the chemical-contaminated seawater severely reduced the bacteria’s rate of growth and oxygen production. In most cases, bacteria populations actually declined.
What can be done?
Given the importance of oxygen levels to the rate of global heating, and the vital role these phytoplankton play in ensuring thriving marine ecosystems, it is essential that we now conduct research outside of the laboratory into the effects of plastic additives on bacteria in the open seas. In the meantime, we need to take active steps to reduce the risks of chemical plastic pollution.
The clear first step is to reduce the amount of plastic entering the ocean. Recent EU and UK bans on single-use plastics are a start, but much more radical policies are needed now to reduce the role plastic plays in our lives as well as to stop the plastic we do use being released into waterways and dramatically improve appallingly low recycling rates.
At an international level, we must make addressing the waste produced by the fishing industry a priority. Broken fishing nets alone account for almost half of the plastic in the Great Pacific Garbage Patch – and lost or discarded fishing gear accounts for one-third of the plastic litter in European seas. EU incentives announced in 2019 to tackle this waste do not go far enough.
Discarded fishing nets and other fishing gear make up a significant proportion of the plastic in our oceans.Aqua Images/Shutterstock
Legislation is also urgently needed to limit the industrial use of harmful chemical additives to a level that is absolutely necessary. As an example, bisphenol A, found in myriad products ranging from receipt paper to rubber ducks, is now listed as a “substance of very high concern” due to its hormone-disrupting effects. But as yet the few existing laws regulating the chemical do not cover the majority of industrial use. This needs to change – as quickly as possible.
Of course, even if we can completely stop new chemicals from reaching the oceans, we will still have a legacy of plastic and associated chemical pollution to deal with. At the moment, we have no idea whether we’ve already done irreversible damage, or if marine ecosystems are resilient to current levels of plastic pollution in the open oceans. But the health of our oceans is not something we can risk. So, in addition to physical removal schemes such as The Ocean Clean Up, we need to invest in chemical removal technologies as well.
In salty ocean environments, such technologies are under-researched. We are currently in the early stages of developing a floating device that uses a small electric circuit to transform BPA into easily retrievable solid matter, but our work alone is not enough. Scientists and governments need to ramp up their efforts to both understand and eliminate the problem of chemical contamination of our oceans, before it’s too late.
While ocean bacteria may seem far removed from our daily lives, we are dependent on these tiny organisms to maintain the balance of our ecosystems. We ignore their plight at our peril.
Negotiators at the COP29 climate conference in Baku have struck a landmark agreement on rules governing the global trade of carbon credits, bringing to a close almost a decade of debate over the controversial scheme.
The deal paves the way for a system in which countries or companies buy credits for removing or reducing greenhouse gas emissions elsewhere in the world, then count the reductions as part of their own climate efforts.
Some have argued the agreement provides crucial certainty to countries and companies trying to reach net-zero through carbon trading, and will harness billions of dollars for environmental projects.
However, the rules contain several serious flaws that years of debate have failed to fix. It means the system may essentially give countries and companies permissions to keep polluting.
What is carbon offsetting?
Carbon trading is a system where countries, companies or other entities buy or sell “credits”, or permits, that allow the buyer to offset the greenhouse gas emissions they produce.
For example, an energy company in Australia that produces carbon emissions by burning coal may, in theory, offset their impact by buying credits from a company in Indonesia that removes carbon by planting trees.
Other carbon removal activities include renewable energy projects, and projects that retain vegetation rather than cutting it down.
The relevant part of the deal is known as “Article 6”. It sets the rules for a global carbon market, supervised by the United Nations, which would be open to companies as well as countries. Article 6 also includes trade of carbon credits directly between countries, which has begun operating even while rules were still being finalised.
Rules for carbon trading are notoriously complex and difficult to negotiate. But they are important to ensure a scheme reduces greenhouse gas emissions in reality, not just on paper.
A long history of debate
Over the past few years, annual COP meetings made some progress on advancing the carbon trading rules.
For example, COP26 in Glasgow, held in 2021, established an independent supervisory body. It was also tasked with other responsibilities such as recommending standards for carbon removal and methods to guide the issuing, reporting and monitoring of carbon credits.
But the recommendations were rejected at COP meetings in 2022 and 2023 because many countries viewed them as weak and lacking a scientific basis.
At a meeting in October this year, the supervisory body published its recommendations as “internal standards” and so bypassed the COP approval process.
At this year’s COP in Baku, the Azerbaijani hosts rushed through adoption of the standards on day one, prompting claims proper process had not been followed
For the remaining two weeks of the conference, negotiators worked to further develop the rules. A final decision was adopted over the weekend, but has attracted criticism.
For example, the Climate Land Ambition and Rights Alliance says the rules risk “double counting” – which means two carbon credits are issued for only one unit of emissions reduction. It also claims the rules fail to prevent harm to communities – which can occur when, say, Indigenous Peoples are prevented from accessing land where tree-planting or other carbon-storage projects are occurring.
Getting to grips with carbon removal
The new agreement, known formally as the Paris Agreement Trading Mechanism, is fraught with other problems. Most obvious is the detail around carbon removals.
Take, for example, the earlier scenario of a coal-burning company in Australia offsetting emissions by buying credits from a tree-planting company in Indonesia. For the climate to benefit, the carbon stored in the trees should remain there as long as the emissions produced from the company’s burning of coal remains in the atmosphere.
But, carbon storage in soils and forests is considered temporary. To be considered permanent, carbon must be stored geologically (injected into underground rock formations).
The final rules agreed to at Baku, however, fail to stipulate the time periods or minimum standards for “durable” carbon storage.
Temporary carbon removal into land and forests should not be used to offset fossil fuel emissions, which stay in the atmosphere for millennia. Yet governments are already over-relying on such methods to achieve their Paris commitments. The weak new rules only exacerbate this problem.
To make matters worse, in 2023, almost no carbon was absorbed by Earth’s forests or soils, because the warming climate increased the intensity of drought and wildfires.
This trend raises questions about schemes that depend on these natural systems to capture and store carbon.
Temporary carbon removal into land and forests should not be used to offset fossil fuel emissions.
What next?
Countries already can, and do, trade carbon credits under the Paris Agreement. Centralised trading will occur under the new scheme once the United Nations sets up a registry, expected next year.
Under the new scheme, Australia should rule out buying credits for land-based offsets (such as in forests and soil) to compensate for long-lasting emissions from the energy and industry sectors.
Australia should also revise its national carbon trading scheme along the same lines.
We could also set a precedent by establishing a framework that treats carbon removals as a complement — not a substitute — for emissions reduction.
The world is striving to reach net-zero emissions as we try to ward off dangerous global warming. But will getting to net-zero actually avert climate instability, as many assume?
Our new study examined that question. Alarmingly, we found reaching net-zero in the next few decades will not bring an immediate end to the global heating problem. Earth’s climate will change for many centuries to come.
And this continuing climate change will not be evenly spread. Australia would keep warming more than almost any other land area. For example if net-zero emissions are reached by 2060, the Australian city of Melbourne is still predicted to warm by 1°C after that point.
But that’s not to say the world shouldn’t push to reach net-zero emissions as quickly as possible. The sooner we get there, the less damaging change the planet will experience in the long run.
Analysis suggests emissions may peak in the next couple of years then start to fall. But as long as emissions remain substantial, the planet will keep warming.
Most of the world’s nations, including Australia, have signed up to the Paris climate agreement. The deal aims to keep global warming well below 2°C, and requires major emitters to reach net-zero as soon as possible. Australia, along with many other nations, is aiming to reach the goal by 2050.
Getting to net-zero essentially means nations must reduce human-caused greenhouse gas emissions as much as possible, and compensate for remaining emissions by removing greenhouse gases from the atmosphere elsewhere. Methods for doing this include planting additional vegetation to draw down and store carbon, or using technology to suck carbon out of the air.
Getting to net-zero is widely considered the point at which global warming will stop. But is that assumption correct? And does it mean warming would stop everywhere across the planet? Our research sought to find out.
Such models are like lab experiments for climate scientists to test ideas. Models are fed with information about greenhouse gas emissions. They then use equations to predict how those emissions would affect the movement of air and the ocean, and the transfer of carbon and heat, across Earth over time.
We wanted to see what would happen once the world hit net-zero carbon dioxide at various points in time, and maintained it for 1,000 years.
We ran seven simulations from different start points in the 21st century, at five-year increments from 2030 to 2060. These staggered simulations allowed us to measure the effect of various delays in reaching net-zero.
We found Earth’s climate would continue to evolve under all simulations, even if net-zero emissions was maintained for 1,000 years. But importantly, the later net-zero is reached, the larger the climate changes Earth would experience.
We found this temperature would continue to rise slowly under net-zero emissions – albeit at a much slower rate than we see today. Most warming would take place on the ocean surface; average temperature on land would only change a little.
We also looked at temperatures below the ocean surface. There, the ocean would warm strongly even under net-zero emissions – and this continues for many centuries. This is because seawater absorbs a lot of energy before warming up, which means some ocean warming is inevitable even after emissions fall.
Over the last few decades of high greenhouse gas emissions, sea ice extent fell in the Arctic – and more recently, around Antarctica. Under net-zero emissions, we anticipate Arctic sea ice extent would stabilise but not recover.
In contrast, Antarctic sea ice extent is projected to fall under net-zero emissions for many centuries. This is associated with continued slow warming of the Southern Ocean around Antarctica.
Importantly, we found long-term impacts on the climate worsen the later we reach net-zero emissions. Even just a five-year delay would affect on the projected climate 1,000 years later.
Delaying net-zero by five years results in a higher global average surface temperature, a much warmer ocean and reduced sea ice extent for many centuries.
Australia’s evolving climate
The effect on the climate of reaching net-zero emissions differs across the world.
For example, Australia is close to the Southern Ocean, which is projected to continue warming for many centuries even under net-zero emissions. This warming to Australia’s south means even under a net-zero emissions pathway, we expect the continent to continue to warm more than almost all other land areas on Earth.
For example, the models predict Melbourne would experience 1°C of warming over centuries if net-zero was reached in 2060.
Net-zero would also lead to changes in rainfall in Australia. Winter rainfall across the continent would increase – a trend in contrast to drying currently underway in parts of Australia, particularly in the southwest and southeast.
Knowns and unknowns
There is much more to discover about how the climate might behave under net-zero.
But our analysis provides some clues about what climate changes to expect if humanity struggles to achieve large-scale “net-negative” emissions – that is, removing carbon from the atmosphere at a greater rate than it is emitted.
Experiments with more models will help improve scientists’ understanding of climate change beyond net-zero emissions. These simulations may include scenarios in which carbon removal methods are so successful, Earth actually cools and some climate changes are reversed.
Despite the unknowns, one thing is very clear: there is a pressing need to push for net-zero emissions as fast as possible.
It feels like we are getting used to the Earth being on fire. Recently, more than 70 wildfires burned simultaneously in Greece. In early 2024, Chile suffered its worst wildfire season in history, with more than 130 people killed. Last year, Canada’s record-breaking wildfires burned from March to November and, in August, flames devastated the island of Maui, in Hawaii. And the list goes on and on.
Watching the news, it certainly feels like catastrophic extreme wildfires are happening more often, and unfortunately this feeling has now been confirmed as correct. A new study published in Nature Ecology & Evolution shows that the number and intensity of the most extreme wildfires on Earth have doubled over the past two decades.
The authors of the new study, researchers at the University of Tasmania, first calculated the energy released by different fires over 21 years from 2003 to 2023. They did this by using a satellite-based sensor which can identify heat from fires, measuring the energy released as “fire radiative power”.
The researchers identified a total of 30 million fires (technically 30 million “fire events”, which can include some clusters of fires grouped together). They then selected the top 2,913 with the most energy released, that is, the 0.01% “most extreme” wildfires. Their work shows that these extreme wildfires are becoming more frequent, with their number doubling over the past two decades. Since 2017, the Earth has experienced the six years with the highest number of extreme wildfires (all years except 2022).
Importantly, these extreme wildfires are also becoming even more intense. Those classified as extreme in recent years released twice the energy of those classified as extreme at the start of the studied period.
These findings align with other recent evidence that wildfires are worsening. For instance, the area of forest burned every year is slightly increasing, leading to a corresponding rise in forest carbon emissions. (The total land area burned each year is actually decreasing, due to a decrease in grassland and cropland fires, but these fires are lower intensity and emit less carbon than forest fires).
Burn severity – an indicator of how badly a fire damages the ecosystem – is also worsening in many regions, and the percentage of burned land affected by high severity burning is increasing globally as well.
Although the global outlook is overall not good, there are striking differences among regions. The new study identifies boreal forests of the far north and temperate conifer forests (blue and light green in the above map) as the critical types of ecosystem driving the global increase in extreme wildfires. They have the higher number of extreme fires relative to their extent, and show the most dramatic worsening over time, while also seeing an increase in total burned area and percentage burned at high severity. The confluence of these three trends is particularly pervasive in eastern Siberia, and the western US and Canada.
What turns a fire into a catastrophe
Nonetheless, many other regions are also susceptible to fires becoming more consequential, as what turns a fire into a catastrophe depends not only on fire trends but also on the environmental, social and economic context.
For instance, in temperate broadleaf forests around the Mediterranean, there has not been a big change in fire activity and behaviour. But the growing number of houses built in and around wild vegetation in fire-prone areas is a clear example of an action that increases human risk and can lead to catastrophe.
The doubling in extreme wildfires adds to a complex picture of fire patterns and trends. This new evidence underscores the urgency of addressing the root causes behind worsening wildfire activity, such as land cover changes, forest policies and management, and, of course, climate change. This will better prepare us for these extreme fires, which are near-impossible to combat using traditional firefighting methods.
This 05 August webinar shares information about the Climate Change Commission’s first annual emissions reduction monitoring report, released in July 2024. The report provides an evidence-based, impartial view of whether the country is on course to reach its goals of reducing and removing greenhouse gas emissions. It provides insight into the progress made, challenges experienced, and opportunities and risks that need to be considered.
The following quote from Dr Rod Carr towards the end of the webinar, paints a realistic picture of what Aotearoa can expect in term of the economic our global standing and the risks. (Pages on this website explain Nationally Determined Contributions, the Paris Accord, and the Emissions Trading Scheme.)
Webinar question: What would happen if New Zealand wasn’t able or didn’t comply with our Nationally Determined Contributions (NDCs)? What are the implications for us?
Answers:
As time it goes on, meeting our NDCs is getting increasingly more difficult and expensive because of delay.
Not meeting the NDCs: we would certainly expect to see greater scrutiny of our actions from our trading partners particularly where we have free trade agreements (FTAs) and particularly with those strong climate elements within them like the EU FTA.
Not meeting them is also likely to come with a loss of influence and on the global scale in relation to climate change, which may mean we are in worse position to advocate for a response that takes into account our national circumstances.
The final thing is that global consumers and customers are increasingly scrutinising their supply chains and looking for products that are reducing emissions, and so we do increase risks around loss of the global markets.
– Jo Hendy CE: Video, The Climate Change Commission 2024 emissions reduction monitoring report, August 2024
When the rest of the world looks at New Zealand, if we haven’t
met our national determine contributions—we won’t know on the 31st of
December 2030 as it takes a couple of years for inventories and count
up— but when the partners that we care about look at our behaviour and
go, ‘Did you do all that you said you would? Did you do all that you
said you would? And did you do all the things you could have done?’
That’s going to inform whether it’s ‘that you tried hard but missed’ or
‘you didn’t try’.
So foreign countries who are in incurring very real economic
costs to reduce their emissions today— and that includes the Europeans,
the Brits, and the Americans (there’s half a trillion U.S. dollars of
taxpayers money being made available to reduce their emissions so the
idea they’re not doing anything; that’s just wrong)—so when those
countries look at NZ in the early 2030s and they look back to 2020, they
go, ‘Well you could have made a better effort to, for example,
decarbonized ground transport there were known technologies that were
available, but you just chose to buy cheap high polluting cars. You
could have chosen to stop burning as much coal and fossil gas to make
electricity by investing more sooner in renewables, but you chose not
to.’ I think that’s going to influence what the world thinks about New
Zealand ‘s behaviour more than whether we did or did hit the exact
number of tonnes for this decade.
And the rest of the world looks at New Zealand and says,
‘You didn’t try. You didn’t take up the known technologies. You are
short sighted, selfish, and reckless in your use of the climate for
profit.’ I think their attitudes to us will be very different than if we
had tried hard and done all we could but things didn’t turn out well.
– Dr Rod Carr, Video, The Climate Change Commission 2024 emissions reduction monitoring report, August 2024
New Zealand is one of the worst countries in the world in terms of meeting its commitments to keep temperatures under 1.5C. (Image: Climate Action Tracker)
New Zealand is also subsidising high greenhouse gas emissions industries by giving the agricultural sector a 100% discount (Image: Nature journal)
Producing concrete blocks with captured carbon has both economic and climate benefits.
Capturing carbon dioxide from the air or industries and recycling it can sound like a win-win climate solution. The greenhouse gas stays out of the atmosphere where it can warm the planet, and it avoids the use of more fossil fuels.
But not all carbon-capture projects offer the same economic and environmental benefits. In fact, some can actually worsen climate change.
I lead the Global CO₂ Initiative at the University of Michigan, where my colleagues and I study how to put captured carbon dioxide (CO₂) to use in ways that help protect the climate. To help figure out which projects will pay off and make these choices easier, we mapped out the pros and cons of the most common carbon sources and uses.
Replacing fossil fuels with captured carbon
Carbon plays a crucial role in many parts of our lives. Materials such as fertilizer, aviation fuel, textiles, detergents and much more depend on it. But years of research and the climate changes the world is already experiencing have made abundantly clear that humanity needs to urgently end the use of fossil fuels and remove the excess CO₂ from the atmosphere and oceans that have resulted from their use.
Balancing the environmental carbon budget is complex, and active carbon management is necessary to stabilize the climate.University of Michigan, CC BY-ND
Some carbon materials can be replaced with carbon-free alternatives, such as using renewable energy to produce electricity. However, for other uses, such as aviation fuel or plastics, carbon will be harder to replace. For these, technologies are being developed to capture and recycle carbon.
Capturing excess CO₂ – from the oceans, atmosphere or industry – and using it for new purposes is called carbon capture, utilization and sequestration, or CCUS. Of all the options to handle captured CO₂, my colleagues and I favor using it to make products, but let’s examine all of them.
CCUS best and worst cases
With each method, the combination of the source of the CO₂ and its end use, or disposition, determines its environmental and economic consequences.
In the best cases, the process will leave less CO₂ in the environment than before. A strong example of this is using captured CO₂ to produce construction materials, such as concrete. It seals away the captured carbon and creates a product that has economic value.
A few methods are carbon-neutral, meaning they add no new CO₂ to the environment. For example, when using CO₂ captured from the air or oceans and turning it into fuel or food, the carbon returns to the atmosphere, but the use of captured carbon avoids the need for new carbon from fossil fuels.
Other combinations, however, are harmful because they increase the amount of excess CO₂ in the environment. One of the most common underground storage methods – enhanced oil recovery – is a prime example.
Underground carbon storage pros and cons
Projects for years have been capturing excess CO₂ and storing it underground in natural structures of porous rock, such as deep saline reservoirs, basalt or depleted oil or gas wells. This is called carbon capture and sequestration (CCS). If done right, geologic storage can durably remove large amounts of CO₂ from the atmosphere.
When the CO₂ is captured from air, water or biomass, this creates a carbon-negative process – less carbon is in the air afterward. However, if the CO₂ instead comes from new fossil fuel emissions, such as from a coal- or gas-fired power plant, carbon neutrality isn’t possible. No carbon-capture technology works at 100% efficiency, and some CO₂ will always escape into the air.
One way to lower the cost is to sell the captured CO₂ for enhanced oil recovery – a common practice that pumps captured CO₂ into oil fields to push more oil out of the ground. While most of the CO₂ is expected to stay underground, the result is more fossil fuels that will eventually send more carbon dioxide into the atmosphere, eliminating the environmental benefit.
Using captured carbon for food and fuel
Short-lived materials made from CO₂ include aviation fuels, food, drugs and working fluids used in machining metals. These items aren’t particularly durable and will soon decompose, releasing CO₂ again. But the sale of the products yields economic value, helping pay for the process.
This CO₂ can be captured from the air again and used to make a future generation of products, which would create a sustainable, essentially circular carbon economy. However, this only works if the CO₂ is captured from the air or oceans. If the CO₂ comes from fossil fuel sources instead, this is new CO₂ that will be added to the environment when the products decompose. So even if it is captured again, it will worsen climate change.
Storing carbon in materials, such as concrete
Some minerals and waste materials can convert CO₂ to limestone or other rock materials. The long-lived materials created this way can be very durable, with lifetimes of longer than 100 years
A good example is concrete. CO₂ can react with particles in concrete, causing it to mineralize into solid form. The result is a useful product that can be sold instead of being stored underground. Other durable products include aggregates used in road construction, carbon fiber used in automotive, aerospace and defense ]applications and some polymers.
Volker Sick, director of the Global CO₂ Initiative at the University of Michigan and author of this article, discusses why carbon capture and its use has been slow to gain attention.
These materials provide the best combination of environmental impact and economic benefit when they are made with CO₂ captured from the atmosphere rather than new fossil fuel emissions.
Choose your carbon projects wisely
CCUS can be a useful solution, and governments have started pouring billions of dollars into its development. It must be closely monitored to ensure that carbon-capture technologies will not delay fossil fuel phaseout. It is an all-hands-on-deck effort to take the best combinations of CO₂ sources and disposition to achieve rapid scaling at an affordable cost to society.
Because climate change is such a complex problem that is harming people throughout the world, as well as future generations, I believe it is imperative that actions are not only fast, but also well thought out and based in evidence.
Authors:
Fred Mason, Gerry Stokes, Susan Fancy and Stephen McCord of the Global CO₂ Initiative contributed to this article.