- 2020: Wang et al; Decreased motility of flagellated microalgae long-term acclimated to CO2-induced acidified waters Nature Climate Change 10, pp561–567
- 2020: Rastelli et al; A high biodiversity mitigates the impact of ocean acidification on hard-bottom ecosystems, Nature Scientific Reports 10, Article number: 2948
- 2020 NOAA: Climate Change: Ocean Heat Content
- 2019: Beaugrand; Prediction of unprecedented biological shifts in the global ocean. Nature Climate Change 9, 237-243
- 2019: Petrou et al: Acidification diminishes diatom silica production in the Southern Ocean Nature Climate Change 9, pages 781–786
- 2019: (IPCC) Intergovernmental Panel on Climate Change’s special report on the oceans and cryosphere
- 2019: Comeau et al; Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nature Climate Change 9, 477–483
- 2019: Schlunegger et al: Emergence of anthropogenic signals in the ocean carbon cycle Nature Climate Change 9, 719–725
- 2018: Ocean acidification in the IPCC Special Report: Global Warming of 1.5°C
- 2018: Riebessell et al; Toxic algal bloom induced by ocean acidification disrupts the pelagic food web; Nature Climate Change 8, 1082–1086
- 2017: Law et al; Ocean acidification in New Zealand waters: trends and impacts, New Zealand Journal of Marine and Freshwater Research 52, pp152-195
- 2017: Cornwall et al; Inorganic carbon physiology underpins macroalgal responses to ocean acidification Nature Scientific Reports 7 | 46297
- 2017: Cornwall et al; Coralline algae elevate pH at the site of calcification under ocean acidification Global Change Biology
- 2016: Seijo et al; Bioeconomics of ocean acidification effects on fisheries targeting calcifier species: A decision theory approach, Fisheries Research 176 pp 1-14
- 2016: NIWA; Investigation ocean acidification
- 2014: Munday et al; Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps, Nature Climate Change, 4 pp487-492
- 2012: Bednaršek et al: Extensive dissolution of live pteropods in the Southern Ocean; Nature Geoscience 5, 881–885
- 2012: Doney et al; Climate change impacts on marine ecosystems PubMed (PMID:22457967) (open access)
- 2009: Doore et al; Physical and biochemical modulations of oceanic acidification in the central North Pacific; PNAS July 28, 2009 106 (30) 12235-12240
- 2003: Caldeira & Wickett; Anthropogenic carbon and ocean pH; Nature 425, 365
<ul>
<li><a href=”https://www.us-ocb.org/” target=”_blank” rel=”noopener”>Ocean Carbon & Biogeochemistry Project</a></li>
<li><a href=”https://oceanacidification.noaa.gov/2025-ocean-acidification-day-or-action/” target=”_blank” rel=”noopener”>NOAA Ocean Acidification Program</a></li>
<li>2025: Ryan-Keogh <span style=”font-style: italic;”>et al</span>; <a href=”https://www.nature.com/articles/s43247-025-02051-4″ target=”_blank” rel=”noopener”>Global decline in net primary production [oceanic] underestimated by climate models</a>, <span style=”font-style: italic;”>Nature Communications Earth & Environment</span> 6 | 75 (Open access)
<ul>
<li><a href=”https://communities.springernature.com/posts/global-declines-in-ocean-primary-production-underestimated-by-climate-models” target=”_blank” rel=”noopener”>Plain English article</a> (Open access)</li>
</ul>
</li>
<li>2024: Jones; <a href=”https://e360.yale.edu/features/plankton-climate-change” target=”_blank” rel=”noopener”>Researchers Parse the Future of Plankton in an Ever-Warmer World</a>, YaleEnvironment 360</li>
<li>2024: Muller & Gruber; <a href=”https://www.science.org/doi/10.1126/sciadv.ado3103″ target=”_blank” rel=”noopener”>Progression of ocean interior acidification over the industrial era,</a> <span style=”font-style: italic;”>Science Advances</span> 27 November (Open access)</li>
<li>2024: Chaabane <em>et al</em>; <a href=”https://www.nature.com/articles/s41586-024-08191-5″ target=”_blank” rel=”noopener”>Migrating is not enough for modern planktonic foraminifera in a changing ocean</a>, <em>Nature</em> article 13 November (Open access)</li>
<li>2024: Mogen <span style=”font-style: italic;”>et al</span>; <a href=”https://www.nature.com/articles/s41561-024-01593-0″ target=”_blank” rel=”noopener”>Multi-month forecasts of marine heatwaves and ocean acidification extremes</a>, <span style=”font-style: italic;”>Nature Geoscience </span>article 21 November</li>
<li>2024: Wong <span style=”font-style: italic;”>et al</span>; <a href=”https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023AV001059″ target=”_blank” rel=”noopener”>Column-Compound Extremes in the Global Ocean</a> <span style=”font-style: italic;”>AGU Advances </span>5 | 3 (open access)</li>
<li>2024: Bach; <a href=”https://bg.copernicus.org/articles/21/261/2024/” target=”_blank” rel=”noopener”>The additionality problem of ocean alkalinity enhancement</a>, <em>Biogeosciences, European Geosciences Union </em>Article 21</li>
<li>2024: Nissen <span style=”font-style: italic;”>et al</span>; <a href=”https://www.nature.com/articles/s41467-023-44438-x” target=”_blank” rel=”noopener”>Severe 21st-century ocean acidification in Antarctic Marine Protected Areas</a>, <span style=”font-style: italic;”>Nature Communications</span> 15 | 259 (Open access)</li>
<li>2023: <a href=”https://sp.copernicus.org/articles/1-osr7/index.html” target=”_blank” rel=”noopener”>Copernicus Ocean State Report</a> (OSR7)</li>
<li>2023: <a href=”https://iccinet.org/statecryo23/” target=”_blank” rel=”noopener”>State of the Cryosphere: Two Degrees is Too High</a></li>
<li>2023: Yu <span style=”font-style: italic;”>et al</span>; <a href=”https://www.nature.com/articles/s41561-023-01297-x” target=”_blank” rel=”noopener”>Millennial atmospheric CO2 changes linked to ocean ventilation modes over past 150,000 years</a>, Nature Geoscience article (Open access).</li>
<li>2023: Duffey <em>et al</em>; <a href=”https://esd.copernicus.org/articles/14/1165/2023/” target=”_blank” rel=”noopener”>ESD Ideas: Arctic amplification’s contribution to breaches of the Paris Agreement</a> European Geosciences Union 14 | 6 pp 1165-1169</li>
<li>2022: <a href=”http://nap.edu/26278″ target=”_blank” rel=”noopener”>A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration</a>; National Academies of Science, Engineering and Medicine, 322pp (Open access PDF)</li>
<li>2022: <a href=”https://climateandnature.org.nz/wp-content/uploads/2022/11/State-of-the-Cryosphere-Report-2022.pdf” target=”_blank” rel=”noopener”>State of the Cryosphere</a></li>
<li>2022: Voosen, <a href=”https://www.science.org/content/article/ocean-geoengineering-scheme-aces-its-first-field-test” target=”_blank” rel=”noopener”>Ocean geoengineering scheme (liming to reduce acidification) aces its first field test</a>, <em>Science</em> article, December
<ul>
<li><a href=”https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1196208″ target=”_blank” rel=”noopener”>Presentation paper at AGU, 14 December, 2022</a></li>
</ul>
</li>
<li>Science Learning Hub NZ: <a href=”https://www.sciencelearn.org.nz/resources/688-ocean-dissolved-gases” target=”_blank” rel=”noopener”>Ocean dissolved gases</a></li>
<li>Otago University: <a href=”https://www.otago.ac.nz/oceanacidification/index.html” target=”_blank” rel=”noopener”>Ocean Acidification Research Theme</a></li>
<li>Smithsonian Institute: <a href=”https://ocean.si.edu/ocean-acidification” target=”_blank” rel=”noopener”>Impacts of acidification on shellfish</a></li>
<li>NOAA: <a href=”https://sos.noaa.gov/datasets/ocean-atmosphere-co2-exchange/” target=”_blank” rel=”noopener”>Ocean-Atmosphere CO2 Exchange</a></li>
<li>BIOACID: <a href=”https://www.oceanacidification.de/?lang=en” target=”_blank” rel=”noopener”><span class=”no-mobile”>Biological Impacts of Ocean Acidification</span></a></li>
<li>2022: Taucher <em>et al</em>; <a href=”https://www.nature.com/articles/s41586-022-04687-0″ target=”_blank” rel=”noopener”>Enhanced silica export in a future ocean triggers global diatom decline</a>, <em style=”letter-spacing: 0.3px;”>Nature</em><span style=”letter-spacing: 0.3px;”> 605, </span><span class=”u-visually-hidden” style=”letter-spacing: 0.3px;”>pp</span><span style=”letter-spacing: 0.3px;”>696-700</span></li>
<li>2021: Mekkes <em>et al</em>; Effects of Ocean Acidification on Calcification of the Sub-Antarctic Pteropod <em>Limacina retroversa</em> <a href=”https://www.frontiersin.org/articles/10.3389/fmars.2021.581432/full” target=”_blank” rel=”noopener”><em>Frontiers in Marine Science</em> </a>02 March</li>
<li>2020: Terhaar <em>et al</em>; <a href=”https://www.nature.com/articles/s41586-020-2360-3″ target=”_blank” rel=”noopener”>Emergent constraint on Arctic Ocean acidification in the twenty-first century</a>, <em>Nature</em> 582, <span class=”u-visually-hidden”>pp</span>379–383</li>
</ul>
<div class=”tb_text_wrap” contenteditable=”true” data-name=”content_text” data-haseditor=””>
<ul>
<li>2020: Wang <em>et al</em>; <a href=”https://www.nature.com/articles/s41558-020-0776-2″ target=”_blank” rel=”noopener”>Decreased motility of flagellated microalgae long-term acclimated to CO<sub>2</sub>-induced acidified waters</a> <span class=”text_exposed_show”><em>Nature Climate Change </em></span>10, <span class=”u-visually-hidden”>pp</span>561–567</li>
<li>2020: Rastelli <em>et al</em>; <a href=”https://www.nature.com/articles/s41598-020-59886-4″ target=”_blank” rel=”noopener”>A high biodiversity mitigates the impact of ocean acidification on hard-bottom ecosystems</a>, <em>Nature Scientific Reports</em> 10, Article number: <span data-test=”article-number”>2948</span></li>
<li>2020 NOAA: <a href=”https://www.climate.gov/news-features/understanding-climate/climate-change-ocean-heat-content” target=”_blank” rel=”noopener”>Climate Change: Ocean Heat Content</a></li>
<li>2019: Beaugrand; <a href=”https://www.nature.com/articles/s41558-019-0420-1?fbclid=IwAR22ZLZkfkVcaPgBDlHg2kQExCUrygt-Jnksv3myJFNhTh0q_WGWuHsB_QI” target=”_blank” rel=”noopener”>Prediction of unprecedented biological shifts in the global ocean</a>. <span class=”text_exposed_show”><em>Nature Climate Change </em></span>9, 237-243</li>
<li>2019: Petrou <em>et al</em>: <a href=”https://www.nature.com/articles/s41558-019-0557-y” target=”_blank” rel=”noopener”>Acidification diminishes diatom silica production in the Southern Ocean</a> <i data-test=”journal-title”>Nature Climate Change</i> 9, <span class=”u-visually-hidden”>pages 7</span>81–786</li>
<li>2019: (IPCC) <a href=”https://www.ipcc.ch/srocc/download-report/” target=”_blank” rel=”noopener”>Intergovernmental Panel on Climate Change’s special report on the oceans and cryosphere</a>
<ul>
<li><a href=”https://www.carbonbrief.org/in-depth-qa-the-ipccs-special-report-on-the-ocean-and-cryosphere” target=”_blank” rel=”noopener”>In-depth Q&A: The IPCC’s special report on the ocean and cryosphere</a> (Carbon Brief)</li>
</ul>
</li>
<li>2019: Comeau <em>et al;</em> <a href=”https://www.nature.com/articles/s41558-019-0486-9″ target=”_blank” rel=”noopener”>Resistance to ocean acidification in coral reef taxa is not gained by acclimatization</a>. <i>Nature Climate Change</i><b> </b>9, 477–483</li>
<li>2019: Schlunegger <em>et al</em>: <a href=”https://www.nature.com/articles/s41558-019-0553-2″ target=”_blank” rel=”noopener”>Emergence of anthropogenic signals in the ocean carbon cycle</a> <i data-test=”journal-title”>Nature Climate Change </i> 9, 719–725</li>
<li>2018: <a href=”https://news-oceanacidification-icc.org/2018/10/08/ocean-acidification-in-the-ipcc-special-report-global-warming-of-1-5c/” target=”_blank” rel=”noopener”>Ocean acidification in the IPCC Special Report: Global Warming of 1.5°C</a></li>
<li>2018: Riebessell <em>et al</em>; <a href=”https://www.nature.com/articles/s41558-018-0344-1″ target=”_blank” rel=”noopener”>Toxic algal bloom induced by ocean acidification disrupts the pelagic food web</a>; <em>Nature Climate Change </em>8, 1082–1086</li>
<li>2017: Law <em>et al</em>; <span class=”NLM_article-title hlFld-title”><a href=”https://www.tandfonline.com/doi/full/10.1080/00288330.2017.1374983″ target=”_blank” rel=”noopener”>Ocean acidification in New Zealand waters: trends and impacts</a>, <em>New Zealand Journal of Marine and Freshwater Research</em> 52, pp152-195</span></li>
<li>2017: Cornwall <em>et al</em>; <a href=”https://www.nature.com/articles/srep46297″ target=”_blank” rel=”noopener”>Inorganic carbon physiology underpins macroalgal responses to ocean acidification</a> <em>Nature Scientific Reports</em> 7 | 46297</li>
<li>2017: Cornwall <em>et al</em>; <a href=”https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13673″ target=”_blank” rel=”noopener”>Coralline algae elevate pH at the site of calcification under ocean acidification </a>Global Change Biology</li>
<li>2016: Seijo <em>et al</em>; <a href=”https://www.sciencedirect.com/science/article/abs/pii/S0165783615301521″ target=”_blank” rel=”noopener”>Bioeconomics of ocean acidification effects on fisheries targeting calcifier species: A decision theory approach</a>, <em>Fisheries Research</em> 176 pp 1-14</li>
<li>2016: NIWA; I<a href=”https://www.niwa.co.nz/news/investigating-ocean-acidification” target=”_blank” rel=”noopener”>nvestigation ocean acidification</a></li>
<li>2014: Munday <em>et al</em>; <a href=”https://doi.org/10.1038/nclimate2195″ target=”_blank” rel=”noopener”>Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps</a>, <em>Nature Climate Change</em>, 4 pp487-492</li>
<li>2012: Bednaršek <em>et al:</em> <a href=”https://www.nature.com/articles/ngeo1635″ target=”_blank” rel=”noopener”>Extensive dissolution of live pteropods in the Southern Ocean;</a> <i>Nature Geoscience </i>5, 881–885</li>
<li>2012: Doney <em>et al;</em> <a href=”http://www.ncbi.nlm.nih.gov/pubmed/22457967″ target=”_blank” rel=”noopener”>Climate change impacts on marine ecosystems</a> PubMed (PMID:22457967) (open access)</li>
<li>2009: Doore <em>et al</em>; <a href=”https://www.pnas.org/content/106/30/12235″ target=”_blank” rel=”noopener”>Physical and biochemical modulations of oceanic acidification in the central North Pacific</a>; <span class=”highwire-cite-metadata-journal highwire-cite-metadata”>PNAS </span><span class=”highwire-cite-metadata-date highwire-cite-metadata”>July 28, 2009 </span><span class=”highwire-cite-metadata-volume highwire-cite-metadata”>106 </span><span class=”highwire-cite-metadata-issue highwire-cite-metadata”>(30) </span><span class=”highwire-cite-metadata-pages highwire-cite-metadata”>12235-12240</span></li>
<li>2003: Caldeira & Wickett; <a href=”https://www.nature.com/articles/425365a” target=”_blank” rel=”noopener”>Anthropogenic carbon and ocean pH</a>; <em>Nature</em> 425, 365</li>
</ul>
</div>